#' dfba_plot_beta
#
#' Plots data from dfba functions
#'
#' @param a.post Shape parameter a for posterior distribution
#' @param b.post Shape parameter b for posterior distribution
#' @param a.prior Shape parameter a for prior distribution
#' @param b.prior Shape parameter b for prior distribution
#' @param plot.prior (optional) If TRUE, plots the prior distribution
#'
#' @return Plot
#'
#' @references Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists. Cambridge: MIT Press.
#' @references Chechile, R.A., & Barch, D.H. (2021). Distribution-free, Bayesian goodness-of-fit method for assessing similar scientific prediction equations. Journal of Mathematical Psychology.
#' @importFrom stats dbeta
#' @importFrom graphics legend
#' @importFrom graphics lines
#' @importFrom graphics par
#'
# Install Package: 'Ctrl + Shift + B'
# Check Package: 'Ctrl + Shift + E'
# Test Package: 'Ctrl + Shift + T'
## Function to format two (raw) vectors as a gamma table
#' @export
dfba_plot_beta<-function(a.post,
b.post,
a.prior=NULL,
b.prior=NULL,
plot.prior=FALSE){
x.phi<-seq(0, 1, 1/1000)
y.phi<-dbeta(x.phi, a.post, b.post)
if (plot.prior==FALSE){
plot(x.phi,
y.phi,
type="l",
xlab="Phi",
ylab="Probability Density")
} else {
opar<-par(no.readonly=TRUE)
par(mar=c(4.1, 4.1, 4.1, 4.1), xpd=TRUE)
plot(x.phi,
y.phi,
type="l",
xlab="Phi",
ylab="Probability Density")
lines(x.phi,
dbeta(x.phi, a.prior, b.prior),
lty=2)
legend("top",
inset = c(0, -0.25),
legend=c("Posterior",
"Prior"),
lty=c(1, 2),
xpd=TRUE,
horiz=TRUE)
on.exit(par(opar))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.